Sourcecode: Example4d.c

Sourcecode: Example4.c

] COLLABORATORS
TITLE :
Sourcecode: Example4.c
ACTION NAME DATE SIGNATURE
WRITTEN BY February 12, 2023

REVISION HISTORY

NUMBER

DATE DESCRIPTION

NAME

Sourcecode: Example4.c iii

Contents

1 Sourcecode: Exampled.c 1
1.1 Exampled.c o e 1

Sourcecode: Example4.c

Chapter 1

Sourcecode: Example4.c

1.1 Example4d.c

/***k*k~k*******k‘k*k~k******~k*k‘k~k********k***k*k*************‘k*‘k******/

/ * */
/+ BAmiga C Encyclopedia (ACE) Amiga C Club (ACC) =/
J*x —mmm e e */
/ * */
/* Manual: AmigaDOS Amiga C Club */
/+ Chapter: Advanced Routines Tulevagen 22 */
/+ File: Exampled.c 181 41 LIDINGO */
/+ Author: Anders Bjerin SWEDEN */
/+ Date: 93-03-17 x/
/* Version: 1.1 */
/ * */
/ * Copyright 1993, Anders Bjerin - Amiga C Club (ACC) */
/ * x/
/* Registered members may use this program freely in their =/
/ * own commercial/noncommercial programs/articles. */
/ * */

/***/

/* This program will examina all objects in a directory/device. */
/* The files will be listed, and if finds a directory it will */
/+ with help of a recursive function examine all objects in */
/+ that directory also and so on... Good example on how to use */
/+ the Examine () and ExNext () functions in a recursive program. *x/
/ * */

/* This example can be used with all versions of the dos library. =*/

/+ Please note that this example is «/
/x for experienced programmers only! x*/

/+ Include the dos library definitions: =/
#include <dos/dos.h>

/* Include memory definitions: =/

Sourcecode: Example4.c

#include <exec/memory.h>

/+* Now we include the necessary function prototype files:

-1

#include <clib/dos_protos.h> /* General dos functions...
#include <clib/exec_protos.h> /* System functions...
#include <stdio.h> /* Std functions [printf()...]
#include <stdlib.h> /* Std functions [exit () ..
#include <string.h> /+ Std functions [strcpy()...]

/* The maximum numbers of characters that can be x/
/* stored in the complete file name with path: */
#define MAX_LENGTH 120

/+* The number of characters we will indent the line
/+ when we go inside another directory:

#define INDENT_LENGTH 4

/* The highest accceptable indent value: =/
#define MAX_INDENT 80

/* Set name and version number: */

*/
*/

UBYTE *version = "S$VER: AmigaDOS/Advanced Routines/Exampled 1.1";

/* Declared our own functions: =/

/% Our main function: =%/
int main(int argc, char *argv[]);

/* Our recursive directory lister: =/
int ExamineDirectory(STRPTR dir_name, int indent);

/+ Adds a directory name to a path: */
void AddToPath
(
STRPTR complete,
STRPTR name,
STRPTR path
)

/% Main function: =/

int main(int argc, char xargvl[])
{
/* Store result code here: =/
int problems;

/* The program name and one argument must have been entered:

*/

*/
*/
*/
*/
*/
*/

Sourcecode: Example4.c

3/8

/ *
/ *
/ *
/ *
/ *
/ %
/ *

if(argc < 2 || argc > 2)
{

/* Wrong number of arguments! =/

printf("Error! Wrong number of arguments!\n");
printf ("You must enter a directory or volume name.\n");
printf("Example4 Name/A\n"); /* Simple template =/

/* Exit with an error code: =/
exit (20);

/+ Examine the directory: =/
problems = ExamineDirectory(argv[1], 0);

/% Any problems? x*/
if(problems)
printf("There were problems, error code: %d\n"

/* The End! =*/
exit (problems);

This function will:
1. allocate some momory for a file info block
lock the directory.

g w N

, problems);

*/
structure. */

*/

Examine the directory, and check that it is a directory. =*/
List all objects in this directory and return when done. x/
If there are any directory inside this directory we call =/

ourself, and we have a nice recursive function... */

int ExamineDirectory(STRPTR dir_name, int indent)

{

/+ This string will be used to store the complete name and path in:

UBYTE total_name[MAX_LENGTH];

/% Our indent string: =/
UBYTE indent_string[MAX_INDENT];

/+ Simple loop variable: «/
int loop;

/* String pointer: */
STRPTR str_ptr;

/* Store result codes here: x/
int result_code;

/* A BCPL pointer to a file lock: */
BPTR my_lock;

/* Declare a pointer to a FileInfoStructure: (This structure =/

*/

Sourcecode: Example4.c

4/8

/* must be long word aligned - start on an even word address.
/* To do this we must therefore allocate the structure with
/* help of AllocMem(). If you have the new dos 2.xx or higher
/+ you are recommended to use the AllocDosObject () function.
/* This will be explained in the next version of the ACE.)
struct FileInfoBlock xmy_file_info_block;

/* Set the result code to OK: =/
result_code = 0;

/+ Allocate enough memory for a FileInfoBlock structure: =/
/* (Any type of memory, fast or chip, and clear it.) */
my_file_info_block = (struct FileInfoBlock x)

AllocMem(sizeof(struct FileInfoBlock), MEMF_ANY | MEMF_CLEAR

/+ Check if we have allocated the memory successfully: =/
if(my_file_info_block == NULL)
{

/* Inform the user about the problem: =%/

printf ("Not enough memory!\n");

/+* Return with an error code: =*/
return(21);
}i

/* We will now try to lock the directory: (We will =/
/* only read data so we can use a shared lock.) */
my_lock = Lock(dir_name, ACCESS_READ);

/* Colud we lock the file? «/
if(my_lock == NULL)
{
/* Inform the user about the problem: =/
printf ("Could not lock the directory \"%$s\"\n", dir_name);

/+ Deallocate the memory we have allocated: «/
FreeMem(my_file_info_block, sizeof(struct FileInfoBlock)

/* Return with an error code: */
return(22);

/* Prepare the indent string: x/

/+» If we have not indented the line too much we indent it: =/
if (indent < MAX_ INDENT)
{

/* Fill the indent string with spaces: */

for(loop = 0; loop < MAX_INDENT; loop++)

indent_string[loop] =" 7;

*/
*/
*/
*/
*/

)i

Sourcecode: Example4.c

5/8

/* Set the stop (NULL) sign: (The higher the indent value is
/+ the further in the string we set the NULL sign.)
str_ptr = indent_string + indent;

/* Set the NULL sign: =/
*str_ptr = NULL;

/+ Try to examine the directory: =/
if(Examine(my_lock, my_file_info_block))

{

/+ Check i1f it is really a directory: =/
if(my_file_info_block->fib_DirEntryType > 0)

{

/* Yes, this is a directory! x/

/+ Examine all objects in this directory: =/

/+ As long as we find objects in this directory we continue:

while (ExNext (my_lock, my_file_info_block))

{

/+ If we find a file we print out the name, and if we */
/+ find a directory we cal our self (recursive): */
if(my_file_info_block->fib_DirEntryType < 0)
{

/+x It is a file! «/

/+ Print the file name: x/
printf ("%$s%s\n",
indent_string, my_file_info_block->fib_FileName);
}
else

{

/+x It is a directory, and should therefore call our sel

/* Print the directory name: */
printf("%s%s (Directory)\n",
indent_string, my_file_info_block->fib_FileName) ;

*/
*/

*

f!

/+ However, first we must add the directory name to the =*/

/* current path (the "fib_FileName" field only contains
/+ the file name of the directory, not the path):

AddToPath(total_name,
my_file_info_block->fib_FileName, /* Name
dir_name /* Path

)

result_code =
ExamineDirectory(total_name, indent + INDENT_LENGTH

*/
*/

)i

/

*/

/x Name & Path x/

*/
*/

Sourcecode: Example4.c 6/8

/* We have now left the while loop. It was either because there x/
/+ were no more objects in the directory, or there was an error: x/
/+ (If the error message isn’t "ERRROR_NO_MORE_ENTRIES" it was */
/* an error.) */
if(IoErr () !'= ERROR_NO_MORE_ENTRIES)
{

/+ Inform the user: =/

printf("Error while reading directory \"%s\"!\n", dir_name);

/* Set an error code: =%/
result_code = 23;

}

else

{
/* (This can only happen the first time this function x/
/+ 1s called, since we will only call ourself if we */
/* know it is a directory.) */

/* The user tried to examine a file! «/
printf("\"%$s\" is a file!\n", dir_name);

/+ No directory specified! =/
printf("You must enter directory name!\n");

/+ Give the user a command line template: =/
printf ("RecursiveExamine DIRECTORY/A\n");

/* Set an error code: */
result_code = 24;

}

else

{

/+ We could no examine the object: =/
printf("Could not examine %s!\n", dir_name);

/* Set an error code: x/
result_code = 25;

/* Unlock the file: «/
UnLock (my_lock);

/+ Deallocate the memory we have allocated: x/
FreeMem(my_file_info_block, sizeof(struct FileInfoBlock));

return(result_code);

/+* This function will copy the path to the complete string, and =/
/+ then add the directory name together with a "/" sign if */
/% necessary. */

Sourcecode: Example4.c

7/8

void AddToPath

(

STRPTR complete,
STRPTR name,
STRPTR path

/* A temporary string pointer: =/
STRPTR string_pointer;

/+ Put a stop character at the beginning of the complete string:
complete[0O] = NULL;

/+ Move to the last character in the string: (Isn’t C nice?) x/
string_pointer = (STRPTR) path + strlen(path) - 1;

/* Check what the right most character in the path string is: =/
if
(

*string_pointer == ’:’/

xstring_pointer == 7/’
xstring_pointer == "\0’

)

{
/+ We can simply add the directory to the path string: */
/+ (Just check that there is enough room before we add */
/* the directory.) %/

if(strlen(path) + strlen(name) < MAX LENGTH)

{
/+ Copy the path to the complete string: =/
strcpy (complete, path);

/+ Add the directory name to the path: =/
strcat (complete, name);

}

else

{

/* We have to add the ’/’ sign before we add the directory name:

/+ (Just check that there is enough room before we add them!)
if(strlen(path) + 1 + strlen(name) < MAX_LENGTH)

{
/+ Copy the path to the complete string: =*/
strcpy (complete, path);

/+ Add the "/" sign: x/
strcat (complete, "/");

/+ Add the directory name to the path: =/
strcat (complete, name);

*/
*/

Sourcecode: Example4.c

8/8

	Sourcecode: Example4.c
	Example4.c

